Brief Content

CHAPTER	CHAPTER NAME	PAGE
1	Biochemistry	1
2	Cell Biology	30
3	Molecular Biology	56
4	Cell signaling and Immunology	81
5	Developmental Biology	99
6	Plant Physiology	115
7	Animal Physiology	131
8	Genetics	155
9	Diversity in Life Forms	179
10	Ecology	199
11	Evolution	222
12	Applied Biology	252
13	Methods in Biology	275
14	Answer Key	303

Content

Chapter 1		
Biochemistry		
A: Atom, Molecule, Bonds & Interactions	1	
B: Solution, pH and Buffer	2	
C: Bioenergetics	5	
D: Enzymes	7	
E: Biomolecules	10	
F: Nucleotide and Nucleic acid (DNA/RNA)	14	
G: Ramachandran Plot	16	
H: Protein Structure	17	
I: Proteins: Electrophoresis/ Chromatography	19	
J: Protein sequencing and spectroscopy	21	
K: Carbohydrate Metabolism	23	
L: Lipids, Amino acids & Nucleotide Metabolism	25	
M: Red-Ox reaction, ETC and ATP synthesis	27	

Chapter 2	
Cell Biology	
A: Membrane: Structure	30
B: Membrane Transport and Potential	32
C: Membrane - Applied Questions	34
D: Protein Sorting	35
E: Cell wall and Cell Organelles	39
F: Nucleus	43
G: Cytoskeleton	44
H: Genome Organization	46
I: Mitosis and Meiosis	48
J: Cell Cycle	51
K: Microbial Growth and Physiology	5/1

Chapter 3		
Molecular Biology		
A: DNA Replication	56	
B: DNA Damage and Repair Mechanisms	59	
C: Prokaryotic Transcription Process	61	
D: Eukaryotic Transcription Process	64	
E: 5' Capping and Poly Adenylation	66	
F: Post Transcriptional Processing	67	
G: Transfer RNA and Amino-Acyl t-RNA	68	
H: Translation Process	70	
I: Genetic Code	72	
J: Translational Inhibitor	73	

K: Regulation of Gene Expression in Virus	74
L: Lac Operon	75
M: Trp Operon and Other Operons	76
N: Eukaryotic Gene Regulation	77
O: Role of Chromatin in Gene Expression	78
P: Gene Silencing - RNA Interference	79

Chapter 4		
Cell Signaling and Immunology		
A: Cell Signaling	81	
B: Signaling Pathways	82	
C: Bacterial Signaling/Chemotaxis	84	
D: Cell-Cell and Cell-Matrix Interaction	85	
E: Cancer	86	
F: Apoptosis	87	
G: Antigens and Immunogenicity	88	
H: Structure and Function of Antibody	89	
I: Antibody diversity & Monoclonal Antibody	91	
J: MHC Molecules & Antigen Presentation	91	
K: Humoral and Cell-Mediated Responses	92	
L: Hypersensitivity and Autoimmunity	94	
M: Immunity to Microbes	95	
N. Vaccinos	97	

Chapter 5	
Developmental Biology	
A: Basics of Development	99
B: Gametogenesis	101
C: Fertilization	102
D: Cleavage	104
E: Gastrulation	105
F: Sea Urchin and <i>C. elegans</i> Development	105
G: Frog Development	106
H: Birds and Reptiles Development	107
I: Mammals Development	108
J: Neural Development	109
K: Drosophila Development	109
L: Morphogenesis and Organogenesis in Animals	111
M: Regeneration and Sex determination	113
N: Plant Development	113

Chapter 6	
Plant Physiology	
A: Photosynthesis - Light Reaction	115
B: Photosynthesis- C3, C4, CAM Pathway	116
C: Photorespiration, Respiration and PPP	118
D: Microbial Nitrogen Fixation	120
E: Nitrate and Ammonium Assimilation	121
F: Plant Hormones	122
G: Photo-morphogenesis	123
H: Solute and Water Transport	125
I: Secondary Metabolites	126
J: Responses of Plants to Abiotic Stress	127
K: Responses of Plants to Biotic Stress	128
L: Plant Development	129

Chapter 7		
Animal Physiology		
A: Blood and Hemostasis	131	
B: Cardiovascular System	133	
C: Respiratory System	135	
D. Nervous System	136	
E: Muscle Contraction	141	
F: Sense Organ	141	
G: Excretory System	143	
H: Digestive System	145	
I: Endocrinology	148	
J: Reproductive System	151	

Chapter 8	
Genetics	
A: Mendel's Law	155
B: Multiple Alleles	159
C: Gene-Gene Interactions	161
D: Extra Mendelian Inheritance	162
E: Linkage Mapping	166
F: Tetrad analysis and Physical Mapping	168
G: Extra chromosomal inheritance	169
H: Microbial Genetics	170
I: Pedigree Analysis	172
J: Quantitative Traits	173
K: Point Mutation	174
L: Chromosomal Mutation	175
M: Recombination	178

Chapter 9		
Diversity in Life Forms		
179		
180		
184		
190		
193		
195		
196		
197		

Chapter 10	
Ecology	
A: The Environment	199
B: Habitat and Ecological Niche	201
C: Population Ecology	202
D: Species Interactions	208
E: Community Ecology	210
F: Ecological Succession	210
G: Ecosystem Ecology	211
H: Biogeography	216
I: Applied Ecology	217
J: Conservation Biology	219

Chapter 11	
Evolution	
A: Origin of Life	222
B: Evolutionary Theories	223
C: Evidences of Evolution	226
D: Geological Time Scale	229
E: Convergent and Divergent Evolution	230
F: Natural Selection	231
G: Population Genetics	236
H: Genetic Drift	238
I: Inbreeding	240
J: Artificial Selection	241
K: Mutation	241
L: Molecular Evolution	243
M: Phylogenetic Tree	244
N: Speciation	245
O: Animal Behaviour	247

Chapter 12				
Applied Biology				
A: Microbial Fermentation	252			
B: Plant Cell and Tissue Culture	254			
C: Animal Cell and Tissue Culture	258			
D: Transgenic Plants	260			
E: Transgenic Animals	264			
F: Genomics	266			
G: Bio-resource & Uses of Biodiversity	267			
H: Breeding in Plants and Animals	269			
I: Bioremediation	272			
J: Biosensors	273			

Chapter 13 Methods in Biology A: Recombinant DNA Methods 275 B: Molecular and Immunotechniques 288 C: Biophysical Method 291 D: Statistical Methods 297 E: Radiolabeling Methods 299 F: Microscopy Methods 300 G: Electrophysiological Methods 301 Answer Key Chapter 1 to 13 303

BIOCHEMISTRY

Section A: Atom, Molecule, Bonds & Interactions

- 1. Which of the following does not participate in the formation of antigen-antibody/ligand-receptor complexes?
 - (1) Hydrophobic bonds
 - (2) Covalent bonds
 - (3) Electrostatic interactions
 - (4) Hydrogen bonds
- 2. Which of the following interaction provide maximum strength in antigen-antibody interactions?
 - (1) Hydrophobic interaction (2) Peptide bond
- - (3) Hydrogen bond
- (4) Ionic bond
- 3. 6M Guanidium hydrochloride is known to denature a number of proteins. Such a high concentration is able to break down the noncovalent forces sustaining the structure of proteins by affecting
 - (1) Electrostatic interactions only
 - (2) Electrostatic and hydrophobic interactions
 - (3) Intrapeptide hydrogen bonding only
 - (4) Electrostatic, hydrophobic, and hydrogen bonding interactions.
- 4. Sodium dodecyl sulphate, an anionic detergent in SDS-Polyacrylamide commonly used electrophoresis, works in facilitating electrophoretic separation of a mixture of proteins by its ability to bind
 - (1) negatively charged amino acid side chains in proteins
 - (2) hydrophobic side chains in proteins
 - (3) positively charged amino acid side chains in proteins
 - (4) peptide group in proteins
- 5. Four proteins (P1, P2, P3 and P4) have 17, 10, 21 and 14 percent hydrophobic amino-acids respectively. The order of precipitation of these proteins using ammonium sulphate will be
 - (1) P3, P1, P4, P2
- (2) P3, P1, P2, P4
- (3) P2, P4, P3, P1
- (4) P2, P4, P1, P3
- The dielectric constant of protein interiors is likely to
 - (1) Similar to that of water's, i.e. close to 80
 - (2) Much smaller than that of water

- (3) Much more than that of water
- (4) At some places in the interior more and at some other places less than that of water
- 7. Which of the following physiochemical property is manifestation of charge separation?
 - (1) Pauling electronegativity
 - (2) Isolated π -orbital overlap
 - (3) Aromaticity
 - (4) Dielectric constant
- 8. If the strength of ionic integrations in air or vacuum is 400 Kcal/mole, what will be its strength in aqueous environment?
 - (1) 5 kcal/mole
- (2) 4 kcal/mole
- (3) 10 kcal/mole
- (4) 40 kcal/mole
- 9. The potential energy for the interaction of two atoms is given by $U = A/r^{12} - B/r^6$. The bottom of the potential well corresponds to
 - (1) the sum of van der Waals radii of the atoms
 - (2) the existence of the maximum electrostatic interaction
 - (3) the situation when the first term vanishes
 - (4) the situation when the atoms get bonded covalently
- 10. The attractive energy parameter in non-bonded interactions explained by London dispersion force is
 - $(1) -A/r^6$

 $(2) -A/r^{12}$

 $(3) A/r^6$

- $(4) A/r^{12}$
- 11. The dominant interaction that drives a water-soluble protein to fold is:
 - (1) H-bonding
 - (2) formation of strong, covalent bonds
 - (3) the hydrophobic interaction
 - (4) charged and polar residues on the outside, in contact with the water
- 12. The strength of the hydrogen bond represented by D-H...A (where D is the donor atom, H is the hydrogen atom and A is the acceptor atom) depends on
 - (1) the D-H bond length and the nature of the D and A
 - (2) the nature of the D and A atoms and the D...A distance.
 - (3) the D...A distance and linearity of the angle DHA.
 - (4) the H...A distance, linearity of the angle DHA and the nature of the atoms D & A.

- 13. Assuming that the sequence of CDRs of an antibody are heavily enriched with Tyrosine and Serine, what is likely to be the driving force stabilizing its interaction with the antigen?
 - (1) Hydrophobic interaction
 - (2) Hydrogen bonding
 - (3) Van-der Waals interaction
 - (4) Covalent interactions
- 14. Among the following which is weakest interaction?
 - (1) Vander wall interaction
 - (2) Ionic interaction in non-polar environment
 - (3) Hydrogen bonding
 - (4) Hydrophobic interaction
- 15. Which of the following interaction would be observed among non-polar molecules?
 - (1) Hydrophobic interactions
 - (2) Hydrophilic interactions
 - (3) London dispersion force
 - (4) Hydrogen bonding
- 16. The van der Waals energy of a single water molecule:
 - (1)0

- (2) -0.2 Kcal/mol
- (3) -0.5 Kcal/mol
- (4) 0.2 Kcal/mol
- 17. The major difference between hormones that have intracellular receptors and those that have cell membrane receptors is that the former is usually:
 - (1) Charged
- (2) Hydrophilic
- (3) Glycosylated
- (4) Hydrophobic
- 18. If side chains of amino acids interact with each other, which of the following would be termed as a salt bridge?
 - (1) Tyr- Phe
- (2) Cys-Cys
- (3) Lys- Glu
- (4) Ala- Val
- 19. Sulphur is in the same column of the periodic table as oxygen, but has electronegativity similar to carbon. Compared to water molecules, molecules of H_2S
 - (1) will ionize more readily.
 - (2) will have greater cohesion to other molecules of H_2S .
 - (3) will have a greater tendency to form hydrogen bonds with each other.
 - (4) will not form hydrogen bonds with each other
- 20. Change in entropy of polar solutes when added in water is
 - (1) 0
 - (2) positive
 - (3) negative
 - (4) cannot be predicted

- 21. Water has a high dielectric constant value of 80. Because of its presence in biological systems compared with low dielectric solvents like hydrocarbons, it should
 - (1) strengthen electrostatic and hydrophobic interaction
 - (2) weaken electrostatic interaction but strengthen hydrophobic interactions
 - (3) weaken electrostatic and hydrophobic interactions
 - (4) Strengthen electrostatic but weaken hydrophobic interactions
- 22. With reference to protein precipitation by organic solvents, which one of the following statements is correct?
 - (1) It is not influenced by pH.
 - (2) It is dependent on the change in dielectric constant.
 - (3) It is unaffected by ionic strength.
 - (4) It is independent of the molecular size of the protein.
- 23. Water has a high dielectric constant of 80 in contrast with many nonpolar solvents having a very low dielectric constant. Due to this property, the electrostatic interactions between various charged side chains of amino acids in proteins after their transfer from a nonpolar solvent to water would
 - (1) decrease
 - (2) increase
 - (3) remain unaffected
 - (4) attain a value of zero
- 24. Which of the following cannot be classified as a weak interaction?
 - (1) van der Waals force
- (2) Peptide bond
- (3) Hydrogen bond
- (4) Ionic interaction
- 25. Which of the following statements are TRUE for hydrogen bonds? Strength of hydrogen bond is
 - (1) high in a solvent of high dielectric constant
 - (2) low in a solvent of low dielectric constant
 - (3) lower in water as compared to organic solvents
 - (4) higher in water as compared to organic

Section B: Solution, pH and Buffer

- How many millilitres of 0.05 N HCl are required to neutralize eight grams of NaOH?
 - (1) 5000

(2)4000

(3) 4500

- (4) 5050
- 2. The pH of a 0.001 molar HCl solution in H_2O is:
 - (1) 1

(2) 2

(3)3

(4) 4

- 3. What will be the required volumes of 1N HCl and 4N NaOH to prepare one litre solution of pH 7?
 - (1) 500 ml; 500 ml
- (2) 800 ml; 200 ml
- (3) 600 ml; 400 ml
- (4) 200 ml; 800 ml
- 4. If 5 ml of 20% ethanol is mixed with 25 ml of 80% ethanol, the resulting solution will approximately be:
 - (1) 50% ethanol
- (2) 70% ethanol
- (3) 100% ethanol
- (4) 80% ethanol
- 5. If you were to take 1.0 ml of a solution of HCl with a pH of 4.0 and add it to 9.0 ml of distilled water, what would be the pH of the final solution?
 - (1) The pH would remain unchanged.
 - (2) The pH would rise to 5.5.
 - (3) The pH would rise to 5.0.
 - (4) The pH would rise to 7.0.
- 6. If the pH of a solution goes from 8 to 7, this means that the hydrogen ion concentration has:
 - (1) decreased by 1 mole/liter.
 - (2) increased by 1 mole/liter.
 - (3) decreased 10 fold.
 - (4) increased 10 fold.
- 7. If the intracellular pH of a cell becomes basic, which one of the following will help reduce the pH?
 - (1) Export of Cl- and import of HCO₃-
 - (2) Import of Cl⁻ and export of HCO₃⁻
 - (3) Import of Na⁺ and HCO3- and export of Cl⁻
 - (4) Export of Na⁺ and Cl
- 8. Two solutions of a substance (non-electrolyte) are mixed in the following manner: 480 ml of 1.5 M first solution + 520 ml of 1.2 M second solution. What is the molarity (M) of the final mixture?
 - (1) 1.250

(2) 1.344

(3) 1.433

- (4) 1.479
- 9. A TE buffer contains 200 mM Tris and 50 mM EDTA. Given the stock solutions 0.5 M Tris and 0.5 M EDTA, volumes of stock solutions required to make 1 liter of buffer solution are respectively:
 - (1) 400 ml, 100 ml
- (2) 200 ml, 50 ml
- (3) 500 ml, 125 ml
- (4) 100 ml, 25 ml
- 10. While making 100 ml of 2M NaCl solution, a student left the solution on a heating platform reducing the volume by 50 ml. This solution was diluted 1:100 for use. What is the final concentration of NaCl in this solution?
 - (1) 20 mM

(2) 80 mM

(3) 40 mM

(4) 400 mM

- 11. The pH of the blood can be maintained by
 - (1) Myoglobin
 - (2) globulins
 - (3) albumins
 - (4) carbonate/bicarbonate salt
- 12. Which one of the following amino-containing buffering molecules will be the most able to resist change in pH when in a pH 7.0 solution at a total (ionized and non-ionic) concentration of 100mM?
 - (1) Tris (pKa = 8.1)
- (2) HEPES (pKa = 7.7)
- (3) MOPS (pKa = 7.3)
- (4) PIPES (pKa = 7.1)
- 13. The pKa of acetic acid is 4.76. At what pH would the concentration of acetic acid and acetate ion be the same?
 - (1) pH = 7

- (2) pH = 6.7
- (3) pH = 9.8
- (4) pH = 4.76
- 14. A 10 N HCl solution was diluted 10-fold with water and the pH of the diluted solution was measured with a pH meter after calibration using standard solutions. Given that the activity coefficient for diluted HCl was 0.01, the pH of the solution would be
 - (1) 0

(2) 1

(3)2

- (4) 2.5
- 15. If pH of solution of NaOH is 12.0 the pH of H_2 SO₄ solution of same molarity will be
 - (1) 2.0

(2) 12.0

(3) 1.7

- (4) 10.0387
- 16. What is the concentration of OH^- in a solution with a H^+ concentration of 1.3×10^{-4} M?
 - (1) 7.7×10⁻¹⁰ M
- (2) 7.7×10⁻⁹ M
- (3) 7.7×10^{-11} M
- (4) 7.7×10⁻¹² M
- 17. Tris hydroxyethyl aminoethane (THAE) has a pK_a of 8.4. The buffering capacity of a buffer made with this compound will be greatest at which pH?
 - (1) pH 9.4
 - (2) pH 7.4
 - (3) pH 8.4
 - (4) Both at pH 7.4 and 9.4
- 18. If you mix equal volumes of pH 4.0 and pH 6.0 solutions, what will be the approximate pH of the final solution?
 - (1)7.0

(2)3.7

(3)5.0

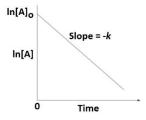
- (4) 4.3
- 19. Which of the following will have maximum effect on lowering in vapour pressure if added in equimolar concentration?

- (1) Sucrose
- (2) Glucose

(3) NaCl

- (4) CaCl₂
- 20. Osmotic pressure does not depend on
 - (1) Temperature
- (2) Degree of ionization
- (3) Molecular weight
- (4) Molar concentration
- 21. Within the aqueous environment of an animal cell, sugars are stored as polymers rather than as monomers. If the sugars were stored as monomers instead of polymers, which of the following properties would be LEAST affected?
 - (1) Freezing point
- (2) Osmotic pressure
- (3) Viscosity
- (4) pH
- 22. Which of the following is not a colligative property, which arises in systems when there is addition of solute?
 - (1) Lowering of vapour pressure
 - (2) Lowering of melting point
 - (3) Lowering of boiling point
 - (4) Increase of osmotic pressure
- 23. You have a freshly prepared 0.1 *M* solution of glucose in water. Each liter of this solution contains how many glucose molecules?
 - $(1) 6.02 \times 10^{23}$
- $(2) 3.01 \times 10^{23}$
- $(3) 6.02 \times 10^{24}$
- $(4) 6.02 \times 10^{22}$
- 24. While making 100 ml of 2M NaCl solution, a student left the solution on a heating platform reducing the volume by 50 ml. This solution was diluted 1:100 for use. What is the final concentration of NaCl in this solution?
 - (1) 20 Mm

(2) 80 mM


- (3) 40 mM
- (4) 400 mM
- 25. What would be the number of protein molecules present in 1.0 mg of protein having a molecular weight of 25 kDa?
 - $(1) 2.4 \times 10^{15}$
- (2) 2.4×10^{16}
- $(3) 2.4 \times 10^{17}$
- $(4) 2.4 \times 10^{18}$
- 26. The total number of cells in the body of an individual is 6 x 10¹⁵. If he is administered with 5.8 mg of insulin (MW:5808 Da), how many molecules will be there in each cell (presume that the drug penetrates all cells in, the body with equal efficiency)?
 - (1) 100

(2) 10

(3) 1000

- (4) 10000
- 27. Sucrose is a disaccharide with molecular weight of 342 Daltons, preparing 500 ml of 0.1M solution would require.
 - (1) 17.1 gm of sucrose
- (2) 0.171 gm of sucrose
- (3) 1.71 gm of sucrose
- (4) 171 gm of sucrose

- 28. In which of the following reactions, is the unit of rate constant and rate of reaction the same?
 - (1) 1st order reaction
- (2) 2nd order reaction
- (3) 3rd order reaction
- (4) Zero order reaction
- 29. The plot between ln[K] and time for a chemical reaction is shown below

This graph suggest that reactions is

- (1) Zero Order
- (2) First Order
- (3) Second Order
- (4) Mixed Order
- 30. Thallium-208 has a half-life of 3.053 min. How long will a sample containing 120.0 μ Ci of Thallium-208 take to decay to 7.50 μ Ci?
 - (1) 6.11 min.
- (2) 9.36 min.
- (3) 12.21 min.
- (4) 18.46 min.
- 31. You are provided with 1.0*M* solutions of NaCl, (NH₄)₂SO₄, MgSO₄ and K₃PO₄. In which of these solutions would a protein be expected to be lest soluble?
 - (1) NaCl

- (2) (NH₄)₂SO₄
- (3) MgSO₄
- (4) K₃PO₄
- 32. What will be the ionic strength of 0.1 M (NH₄)₂SO₄?
 - (1) 0.2

(2) 0.4

(3) 0.6

- (4) 0.8
- 33. Which of the following salt is the most commonly used reagent for salting out proteins because its high solubility (3.9M in water at 0°C) permits the achievement of solutions with high ionic strengths (up to 23.4 in water at 0°C)?
 - (1) Ammonium sulfate ((NH₄)₂SO₄)
 - (2) Sodium chloride (NaCl)
 - (3) Magnesium sulfate (MgSO₄)
 - (4) Potassium chloride (KCI)
- 34. Aqueous environment in a spherical endosome a closed vesicle of 100 nm diameter, is at a pH 5.0, in order to denature and hydrolyze the material internalized by a cell. Assuming Avogadro's number to be 6×10²³, the number of free protons in an endosome is closest to
 - (1)24

(2) 3

(3)2400

(4) 300

- 35. The number of water molecules present in a 300 residue soluble protein of spherical shape (diameter = 2nm) having 20% (V/V) water is closest to *Assume*: density of water = 1000 kg/m^3 , Avogadro's number = 6×10^{23} .
 - (1)224

(2)9

(3) 140

(4)28

Section C: Bioenergetics

- 1. Which of the following statements will always apply when a reversible chemical reaction has attained equilibrium?
 - (1) All reactants will convert to products
 - (2) The reaction proceeds alternately in the forward and reverse directions
 - (3) The Gibbs free energy of the system reaches a minimum
 - (4) The forward reaction will dominate over the reverse reaction
- 2. In which one of the following situations, the entropy may be maximum?
 - (1) A class full of students without the teacher being present
 - (2) A class full of students with teacher being present
 - (3) A class full of students answering an annual examination monitored by video camera
 - (4) An empty class room
- 3. If enthalpy change for a reaction is zero, then ΔG° equals to
 - (1) -T∆S°

(2) T∆S°

(3) -∆H°

- (4) In keq
- 4. Which one of the following equations defines the enthalpy of reaction, ΔH , for a reaction occurring at constant pressure that does expansion work?
 - (1) $\Delta H = \Delta U$
- (2) $\Delta H = \Delta U + P \Delta V$
- (3) $\Delta H = \Delta G T \Delta S$
- $(4) \Delta H = q + w$
- 5. Which of the following statement is NOT true?
 - (1) First law of thermodynamics suggest that energy is conserved in universe
 - (2) Second law of thermodynamics the universe tends toward maximum disorder
 - (3) Standard free energy change ($\Delta G^{o'}$) is the indicator of spontaneity under cellular physiological conditions
 - (4) The standard free energy change ($\Delta G^{\circ'}$), is the free energy change at 25°C, 1 atm pressure, and unit activities of reactants and products in dilute aqueous solution at pH 7.

6. Given the following values of ΔH and ΔS , which one of the following processes can take place at 300°K without violating the second law of thermodynamics?

ΔΗ	ΔS
(Kcal.Mol ⁻¹)	(cal.Mol ⁻¹ .°K ⁻¹)
120	+80
220	-80
3. +20	+30
4. +20	-30

- 7. The ΔG^0 (Kcal/mol) values for K_{eq} of 0.1, 0.01 and 0.001 are 1.36, 2.72 and 4.09, respectively. It can be concluded that the relationship between ΔG and K_{eq} is
 - (1) Parabolic
- (2) Exponential
- (3) Hyperbolic
- (4) Linear
- 8. What will be change in enthalpy, entropy and free energy during protein folding will be?
 - (1) Positive for entropy and negative for enthalpy and free energy
 - (2) Negative for entropy and enthalpy but positive for free energy
 - (3) Negative for entropy, enthalpy and free energy
 - (4) More than zero for entropy and free energy but less than zero for free energy
- 9. A chemist optimizes a chemical reaction such that product concentration exceeds the concentration of the reactants. What conclusions can be drawn about Keq and ΔG° in this reaction?
 - (1) Keq >1, ΔG° >0
- (2) Keq >1, ΔG^{0} <0
- (3) Keq<1, $\Delta G^{0}>0$
- (4) Keq<1, ΔG^{0} <0
- 10. If the equilibrium constant for a chemical reaction at 20° C is 20, the standard free energy change associated with the reaction will be:
 - (1) -1.74 kcals
- (2) 1.74 kcals
- (3) 0.76 kcals
- (4) 0.12 kcals
- 11. Reaction A and reaction B have K'eq values of 10 and 100, respectively. Which of the following statement is correct with respect to $\Delta G'$?
 - (1) $\Delta G'$ of $A = \Delta G'$ of B
 - (2) $\Delta G'$ of $A \approx \Delta G'$ of B
 - (3) $\Delta G'$ of $B > \Delta G'$ of A
 - (4) $\Delta G'$ of A > $\Delta G'$ of B
- 12. Which one of the following is an expression of the van't Hoff equation?
 - (1) In $K = -\Delta H_0 / RT + \Delta S_0 / R$
 - $(2) \Delta H(T_2) = \Delta H(T_1) + \Delta C p(T_2 T_1)$
 - (3) $\Delta G_0 = \Delta H_0 T \Delta S_0$
 - $(4) \Delta U = q + w$

- 13. The equilibrium constant ((Keq) for the reaction S → P is 5. Suppose we have a mixture of [S] = 2 x 10⁻⁴ M and [P] = 3 x 10⁻⁴ M. In which direction will the reaction proceed on addition of appropriate enzyme?
 - (1) Proceeds in a forward direction
 - (2) Proceeds in a reverse direction
 - (3) Proceeds in both the directions
 - (4) Proceeds sometimes in forward and sometimes in reverse direction
- 14. A decrease in entropy in a reaction (+ ΔS_{system}) can be overcome by
 - (1) A decrease in entropy in the surroundings $(-\Delta S_{\text{surrounding}})$.
 - (2) If the temperature of the reaction is lower than the ratio of $\Delta H/\Delta S$.
 - (3) If the temperature of the reaction is greater than the ratio of $\Delta H/\Delta S$.
 - (4) Increase in free energy
- 15. Hydrolysis of ATP over ADP and AMP generates highest energy because
 - (1) ATP on hydrolysis generates thermodynamically stable structure
 - (2) ATP is highly unstable
 - (3) Hydrolysis of ATP is pH dependent
 - (4) Hydrolysis of ADP and AMP do not generate thermodynamically stable structure
- 16. Considering the equation $\Delta G^0 = \Delta H^0 \Delta S^0$ which one of the following statements is NOT CORRECT?
 - (1) When ΔG^0 is negative, the reaction is exergonic
 - (2) When $\Delta \emph{G}^{0}$ is negative, the reaction can occur spontaneously
 - (3) When ΔS^0 is negative, the molecular disorder decreases during the reaction
 - (4) When ΔH^0 is negative, the reaction is endothermic
- 17. During a cyclic process, which one of the following is NOT always zero?
 - (1) Enthalpy change
 - (2) Entropy change
 - (3) Internal energy change
 - (4) Work done by the system
- 18. 8M urea solution became cold when it was prepared by dissolving an appropriate amount of urea in water at room temperature. This is because the dissolution of urea is
 - (1) exothermic and exergonic
 - (2) exothermic and endergonic
 - (3) endothermic and exergonic
 - (4) endothermic and endergonic

- 19. In which of the following case does the entropy decrease?
 - (1) Polymerization
 - (2) Melting of ice
 - (3) Boiling of water
 - (4) Dissolution of sodium chloride in water
- 20. Which of the following statements is correct regarding the entropy change during protein folding?
 - (1) Entropy of the protein chain increases while that of the solvent decreases
 - (2) Entropy of the protein chain decreases while that of the solvent increase
 - (3) Both the entropies of the protein chain and the solvent increase
 - (4) Both the entropies of the protein chain and the solvent decrease
- 21. Sometimes reactions may not easily take place even though the standard free energy change is highly negative. Which one of the following is a possible explanation?
 - (1) The statement itself is false, therefore needs no explanation
 - (2) The reverse reaction is very fast as compared to forward reaction
 - (3) The reaction is highly endothermic
 - (4) The free energy of activation is very high
- 22. Life in a different planet has evolved to use a reaction

$$A + B \rightarrow C$$

This reaction releases a lot of energy that sustains life. A and B are both naturally abundant and are found in air. What is the nature of this reaction $A+B\to C$ in nature for life to be sustainable?

- (1) The reaction should be thermodynamically favourable but kinetically hindered
- (2) The reaction should be kinetically favourable but thermodynamically hindered
- (3) The reaction should be thermodynamically and kinetically favourable
- (4) The reaction should be thermodynamically and kinetically hindered
- 23. Which among the following statements about living systems is not correct?
 - (1) They can grow and divide.
 - (2) They can evolve.
 - (3) They constitute a thermodynamically closed system.
 - (4) They can convert one form energy into another.

Index

CHAPTER I		CHAPTER 3	
BIOCHEMISTRY		MOLECULAR BIOLOGY	
A: Atoms, Bonds and Interactions	3	A: DNA Replication	61
B: pH and Buffer	4	B: DNA damage and repair mechanisms	64
C: Molarity, Colligative Property, Rate of Reaction	6	C: Prokaryotic Transcription Process	65
D: Thermodynamics	7	D: Eukaryotic Transcription Process	66
E: Carbohydrate	9	E: 5' Capping and poly adenylation	67
F: Lipids	11	F: RNA editing, splicing, trans-splicing and transport	68
G: Nucleotides	12	G: Promoter Deletion Assay/EMSA	70
H: Amino Acids	13	H: Transfer RNA and Amino Acyl t-RNA	71
I: Peptides and Proteins	14	I: Translation Process	72
J: Ramachandran Plot	15	J: Genetic Code	74
K: Secondary Structure of Proteins	17	K: Translational Inhibitor	75
L: Tertiary and quaternary structure of proteins	17	L: Regulation of gene expression in Phage/virus	76
M: Proteins Stability	19	M: Control of gene expression: Lac Operon	76
N: Protein Sequencing	20	N: Trp Operon and other regulatory mechanism	78
O: Applied Question: Proteins	20	O: Control of gene expression in eukaryotes	81
P: Enzyme	22	P: mTOR pathway and Translation regulation	83
Q: Electron Transport Chain and Redox Potential	25	Q: Role of chromatin in gene expression	84
R: Metabolism	26	R: Gene silencing - RNA interference	85
		S: Molecular techniques	86
CHAPTER 2			
CELL BIOLOGY		CHAPTER 4	
A: Membrane Structure and Lipid Rafts	31	SIGNALLING & IMMUNOLOGY	
B: Membrane Transport and potential	32	A: Host parasite interaction	91
C: Applied Questions	37	B: Cell Signaling	91
D: Protein Sorting	38	C: G Protein Coupled Receptor	92
E: Cell wall and cell organelles	43	D: Receptor Tyrosine Kinase and NF-kB Signaling	93
F: Cytoskeleton and its role in motility	47	E: Nuclear Receptor	94
G: Genome Organization	50	F: Bacterial Signaling/chemotaxis	94
H: Mitosis and meiosis cell	52	G: Applied Question-Signaling	94
I: Cell Cycle and Regulation	53	H: Regulation of haematopoiesis	96
J: Microbial Growth, Physiology and Stress	57	I: Cell-Cell and Cell-Matrix Interaction	96

J: Cell-Cell Signaling	98	I: Cryptochromes, phototropins, stomatal movement	150
K: Cancer	99	J: Photoperiodism and biological clocks	150
L: Apoptosis and Autophagy	103	K: Solute/Water transport	152
M: Antigens and immunogenicity	104	L: Sucrose-Starch Synthesis, Phloem translocation	154
N: Structure and Function of Antibody	104	M: Secondary metabolites	155
O: Antibody diversity and monoclonal antibodies	105	N: Responses of plants to abiotic stress	156
P: MHC molecules, antigen presentation	106	O: Responses of plants to biotic stress	157
Q: Humoral and cell-mediated immune responses	107		
R. The complement system and Toll like receptors	109	CHAPTER 7	
S: Hypersensitivity and autoimmunity	109	ANIMAL PHYSIOLOGY	
T: Mycobacterium tuberculosis and other bacteria	110	A: Blood	161
U: Plasmodium falciparum and Leishmania	111	B: Blood Circulation	162
V: Viral Infections	111	C: Cardiac cycle, Human heart and ECG	163
W: Vaccines	112	D: Respiratory system	167
		E: Excretory system	168
CHAPTER 5		F: Gross Neuroanatomy of the brain and spinal cord	170
DEVELOPMENTAL BIOLOGY		G: Action potential, Nerve Impulse Transmission	171
A: Fate Determination Commitment and Morphogen	115	H: Nervous system - Sensory organ	173
B: Gametogenesis and Fertilization	117	I: Neural control of muscle tone and posture	174
C: Gastrulation	119	J: Thermoregulation	177
D: Drosophila Development	123	K: Digestive system	178
E: Dictyostellium development, vulva formation and le	ns	L: Basic mechanism of hormone action	178
induction	126	M: Gametogenesis, neuroendocrine regulation	181
F: Vertebrate Limb Development	127		
G: Regeneration, Metamorphosis, Induction and Sex		CHAPTER 8	
Determination	130	GENETICS	
H: Apoptosis	132	A: Dominance, segregation, independent assortment	185
I: Plant Development	133	B: Multiple alleles	187
		C: Complementation test and recon	187
CHAPTER 6		D: Gene-Gene interactions	188
PLANT PHYSIOLOGY		E: Genomic imprinting, dosage compensation, phenoco	
A: Photosynthesis - Light Reaction	139	Sex linked characters	189
B: CO ₂ fixation-C ₃ , C ₄ and CAM pathways	141	F: Recombination and Gene mapping methods: Linkage	190
C: Photorespiration, Respiration, ETC, PPP	145	G: Tetrad analysis	193
D: Microbial Nitrogen Fixation	146	H: Molecular markers in genetics	193
E: Nitrate and ammonium assimilation	147	I: Mapping by deletion and somatic cell hybrids	195
F: Plant hormones	147	J: Extra chromosomal inheritance and maternal effect	196
G: Plant Hormone –Signaling	148	K: Microbial Transformation and Transduction	197
H: Phytochromes	149	L: Mapping genes by interrupted mating	198

M: Pedigree analysis	198	H: Genetic Drift	272
N: Quantitative traits and heritability	200	I: Mutation and Molecular Evolution	273
O: Mutation: Types, causes and detection	201	J: Phylogenetic Tree	275
P: Structural alterations of chromosomes	203	K: Reproductive Isolation / Speciation	277
Q: Numerical changes and Polyploidy	204	L: Brain, Behaviour, and Evolution	278
R. Homologous and site specific recombination	204		
		CHAPTER 12	
CHAPTER 9		APPLIED BIOLOGY	
DIVERSITY IN LIFE FORMS		A: Microbial fermentation	285
A: Principles of taxonomy and nomenclature	209	B: Application of immunological principles	286
B: Classical & quantitative methods of taxonomy	210	C: Tissue culture methods for plants and animals	288
C: Criteria used for classification in animals	216	D: Transgenic animals and plants	292
D: Classification of plants	220	E: Agrobacterium tumefaciens	296
E: Fungus	225	F: Genomics and its application	299
F: Algae	226	G: Bio-resource and uses of biodiversity	300
G: Natural history of Indian Subcontinent	226	H: Breeding in plants and animals	301
H: Common parasites and pathogen	227	I: Molecular markers	302
		J: Bioremediation and phytoremediation	303
CHAPTER 10		K: Biosensor	304
ECOLOGY			
A: The Environment, Habitat and Ecological niche	231	CHAPTER 13	
B: Population Ecology	233	METHODS IN BIOLOGY	
C: Species Interactions	238	A: Molecular methods and techniques	307
D: Community ecology	243	B: Polymerase Chain Reaction	311
E: Ecological Succession	246	C: Protein and DNA sequencing	313
F: Ecosystem Ecology	247	D: Electrophoresis, chromatography & centrifugation	315
G: Biogeography	250	E: Histochemical and Immuno techniques	319
H: Applied Ecology	252	F: Biophysical Method	320
I: Conservation Biology	253	G: Statistical Methods	323
		H: Radiolabelling techniques	325
CHAPTER 11		I: Microscopic techniques	325
EVOLUTION		J: Electrophysiological methods	326
A: Origin of life	257	K: Methods in field biology	327
B: Lamarckism, Darwinism, Neo-Darwinism	258		
C: Evidences of Evolution	260		
D: Geological time Scale	261		
E: Natural selection	263		
F: Sexual Selection	268		
G: Hardy-Weinberg Population	269		
or manay monitor 8 repairs non			

CHAPTER

1

BIOCHEMISTRY

Sections

A: Atoms, Bonds and Interactions

B: pH and Buffer

C: Molarity/Colligative Property/Rate Of Reaction

D: Thermodynamics

E: Carbohydrate

F: Lipids

G: Nucleotides

H: Amino Acids

I: Peptides and Proteins

J: Ramachandran Plot

K: Secondary Structure of Proteins

L: Tertiary and quaternary structure of proteins

M: Proteins Stability

N: Protein Sequencing

O: Applied Question: Proteins

P: Enzyme

Q: Electron Transport Chain and Redox Potential

R: Metabolism

www.ifasonline.com 2

Section A: Atoms, Bonds and Interactions

- 1. Consider the following statements,
- A. Isotopes differ in the number of neutrons but have same number of protons
- B. Hydrogen, Deuterium and Tritium differ in the number of neutrons and atomic mass
- C. Tritium is radioactive and decays to Hydrogen
- D. Carbon-14 is radioactive and decays to Nitrogen-14
- E. Radioisotopes have stable nucleus

Pick the combination with ALL correct statements

(1) A, B and D

(2) B, D and E

(3) A, C and D

(4) A, C and E

- 2. Consider the following statements,
- A. When non-polar substance are added in water there is negative change in free energy
- B. The interaction between histone proteins and DNA is predominantly electrostatic
- C. By knowing the bond energies, it is not possible to deduce whether the bond is covalent or hydrogen bond
- D. Hydrophobic interactions are driving force for folding of globular protein.

Pick the combination with correct statements.

(1) A and B

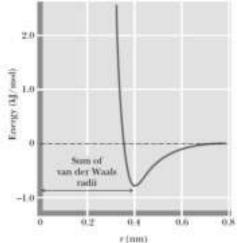
(2) B and C

(3) C and D

(4) B and D

- 3. Myoglobin protein in presence of 0.1 M NaCl solution was heated and the observed T_m was 50°C. When the same myoglobin protein solution in 0.5 M NaCl was heated, the observed T_m was 60°C. What is the most probable reason for this increase in T_m ?
- (1) Hydrophobic interaction is increased and electrostatic repulsion is decreased.
- (2) Hydrophobic interaction is decreased and electrostatic repulsion is increased.
- (3) Hydrogen-bonding is increased and hydrophobic interactions decreased.
- (4) Electrostatic attractive forces and van der Waals interaction is increased
- 4. Match the following bonds with their suitable occurrence in biological system

(a)	Hydrogen bond	(i)	Any two atoms in
			contact
(b)	Van der walls	(ii)	Peripheral proteins
	forces		
(c)	c) Covalent bond		Polypeptide chain
(d)	Ionic bond	(iv)	Double stranded DNA


- (1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (2) (a)-(ii), (b)-(i), (c)-(iii), (d)- (iv)
- (3) (a)-(i), (b)-(iv), (c)-(ii), (d)- (iii)
- (4) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
- 5. Which of the following statement for Vanderwaals interactions?
- A. They are formed only atoms of non-polar molecules
- B. They are major stabilizing interactions in proteins
- C. They are non-specific and weakest among interactions
- D. They decrease when the atoms are brought closer or taken away from Vanderwaals contact distance

Which statement are TRUE for Vanderwaals interactions?

(1) A and C

(2) B and C

- (3) C and D
- (4) B and D
- 6. Van der Waals forces are the result of induced electrical interactions between closely approaching atoms or molecules as their negatively-charged electron clouds fluctuate instantaneously in time. These fluctuations allow attractions to occur between the positively charged nuclei and the electrons of nearby atoms. The van der Waals interaction energy profile as a function of the distance, r, between the centers of two atoms is shown in diagram below. The energy can be calculated using the empirical equation $U = B/r^{12} A/r^6$.

Consider the following statements:

A. When two atoms approach each other so closely that their electron clouds interpenetrate, strong repulsion occurs. Such *repulsive* van der Waals forces follow an inverse 12^{th} -power dependence on $r(1/r^{12})$,

B. Van der Waals interactions include dipole–dipole interactions, whose interaction energies decrease as $1/r^3$; dipole-induced dipole interactions, which fall off as $1/r^5$; and induced dipole-induced dipole interactions, often called London dispersion forces, which diminish as $1/r^6$.

- C. Between the repulsive and attractive domains lies a low point in the potential curve. This low point defines the distance known as the van der Waals contact distance, which is the interatomic distance that results if only van der Waals forces hold two atoms together and at this distance the interaction is strongest.
- D. At best, van der Waals interactions are weak and individually contribute 0.4 to 4.0 kcal/mol of stabilization energy.
- E. Vander wall interactions are formed only in non-polar environments

Which of the following statement is true?

(1) A, B and C (2) B, C and D (3) C, D and E (4) D, A and E

7. Consider the following cases of hydrogen bonding between hydrogen donor (represented by solid line) and hydrogen acceptor (represented by dotted line)

Donor	Accepto
A. O-H	O
B. O-H	N
C. N-H	O
D. N-H	N

Arrange the following possible hydrogen bonds in decreasing order of strength?

(1) A>B>C>D (2) B>A>D>C (3) A>C>D>B (4) B>D>C>A

- 8. Hydrophobic amino acids are prevalent in transmembrane regions of membrane embedded proteins because
- (1) Hydrophobic amino acids destabilize the membrane bilayer and increase membrane fluidity
- (2) Phospholipid tails are hydrophobic and therefore membrane embedded regions can be stabilized through hydrophobic interactions
- (3) The side chains of hydrophobic amino acids interact covalently with phospholipids
- (4) It is just a random occurrence originated from heavy bias of hydrophobic
- 9. Non-covalent bonds are not as strong as covalent bonds, but they are important in the stabilization of molecules. In contrast to covalent bonds, non-covalent bonds do not share electrons.

Match the following bonds with their approximate energies:

 0						
(a)	Hydrogen bond	(i)	21 KJ			
(b)	Van der walls forces	(ii)	15 KJ			
(c)	Ionic interaction	(iii)	10 KJ			
(d)	Hydrophobic interactions	(iv)	5 KJ			

- (1) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (2) (a)-(ii), (b)-(i), (c)-(iii), (d)- (iv)
- (3) (a)-(i), (b)-(iv), (c)-(ii), (d)- (iii)
- (4) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
- 10. Many isotopes, however, are unstable; they undergo radioactive decay, a process that involves the emission from the radioactive nuclei of subatomic particles such as helium nuclei (α particles), electrons (β particles), and/or photons (γ radiation). Radioactive nuclei emit characteristic radiation with fixed life as shown in table below

Radioisotope		Radiation Type	Half-Life	
	A. ³ H	(i) weak β	I. 12.31 years	
	B. ¹⁴ C		II. 5715 years	
	C. ²² Na	(ii) γ rays	III. 2.60 years	
	D. ³² P	(iii) strong β	IV. 14.28 days	

Which of the following is correct match?

- (1) A-(i)-III; B-(i)-II, C-(ii)-III, D-(iii)-IV
- (2) A-(i)-IV; B-(ii)-II, C-(ii)-III, D-(iii)-I
- (3) A-(iii)-III; B-(i)-I, C-(ii)-II, D-(iii)-IV
- (4) A-(iii)-I; B-(ii)-IV, C-(ii)-III, D-(iii)-III

Section B: pH and Buffer

- 1. The pH of 10^{-8} M solution of HCI will be [Given log of $10^{-8} = -8$; log 1.1 = 0.04]
- (1)7.96
- (2) 7
- (3)6.96
- (4)7.04
- 2. 10 mM Phosphate buffer (pH 9.00) is diluted one million times with distilled water (pH 7.00). pH of this diluted buffer is:
- (1) 4.00
- (2)7.04
- (3) 8.00
- (4) 6.96

(Help: $log10 \ 10x = x$; $log10 \ 1.10 = 0.04$; $log10 \ 1.01 = 0.004$)

3. In this question, "up" means higher than and "down" means lower than the normal values of pH = 7.4, $[HCO_3]$ = 24 mM, and pCO₂ = 40 mm Hg.

In partially compensated metabolic alkalosis:

	рН	[HCO ³⁻]	pCO ₂
(1)	Up	Up	Down
(2)	Down	Up	Up
(3)	Up	Up	Up
(4)	Down	Up	Down

4. During an all-out sprint, muscles metabolize glucose anaerobically, producing a high concentration of lactic acid, which lowers the pH of the blood and of the cytosol and contributes to the fatigue sprinters experience well before their fuel reserves are exhausted. The main blood buffer against pH changes is the bicarbonate/CO₂ system.

$$pK_1 = pK_2 = pK_3 =$$
 $CO_2 \longrightarrow CO_2 \xrightarrow{2.3} H_2CO_3 \xrightarrow{3.8} H^* + HCO_3 \xrightarrow{10.3} H^* + CO_3^2$
(gas) (dissolved)

What would you advise sprinters to improve their performance?

- (1) to hold their breath for a minute immediately before the race
- (2) to breathe rapidly for a minute immediately before the race
- (3) to hold their breath for a minute immediately after the race
- (4) to breathe rapidly for a minute immediately after the race

$$PK_{i}$$
 PK_{i}
 P

- 5. As shown above, phosphoric acid has three ionizable protons, with the pK_a values indicated. The buffering capacity of phosphoric acid is <u>LEAST</u> at pH:
- (1) 2.1
- (2)4.6
- (3) 6.8
- (4)7.4
- 6. The strongly polar hydrogen-bonding properties of water make it an excellent solvent for ionic (charged) species. By contrast, nonionized, nonpolar organic molecules, such as benzene, are relatively insoluble in water. In principle, the aqueous solubility of an organic acid or base can be increased by converting the molecules to charged species. For example, the solubility of benzoic acid in water is low.

The addition of sodium bicarbonate to a mixture of water and benzoic acid raises the pH and deprotonates the benzoic acid to form benzoate ion, which is quite soluble in water.

Consider the following compounds in respect to solubility in an aqueous solution of 0.1 M NaOH or 0.1 M HCl. (The dissociable proton in (c) is that of the OOH group.)

OH CH₃ N-C-CH₄
OH

Pyridine ion
$$pK_a = 5$$
 $pK_a = 10$
 $pK_a = 10$

- A. Pyridine is ionic in its protonated form and therefore more soluble at the lower pH, in 0.1 M HCl.
- B. β -Naphthol is ionic when *de*protonated and thus more soluble at the higher pH, in 0.1 M NaOH.
- C. *N*-Acetyl tyrosine methyl ester is ionic when *de*protonated and thus more soluble in 0.1 M N HCl.

Which of the following statement is/are true?

- (1) A only
- (2) A and B
- (3) B and C
- (4) A, B and C
- 7. What would be the fraction of histidine that has its imidazole side chain deprotonated at pH 7? (The pKa values for histidine are $pK_1 = 1.8 pK_2$ (imidazole) = 6 and $pK_3 = 9.2$)
- (1) 1 %
- (2) 10 %
- (3) 90 %
- (4) 99 %
- 8. During the fermentation of wine, a buffer system consisting of tartaric acid and potassium hydrogen tartrate is produced by a biochemical reaction.

Assuming that at some time the concentration of potassium hydrogen tartrate is twice that of tartaric acid, calculate the pH of the wine. The pKa of tartaric acid is 2.96.

- (1) 2.96
- (2) 2.66
- (3) 3.26
- (4) 4.96

- 9. Consider the following statements regarding pH and Buffers:
- A. pH is the negative log of $[H^+]$. A low pH characterizes an acidic solution, and a high pH denotes a basic solution.
- B. The strength of weak acids is expressed by pKa, the negative log of the acid dissociation constant.
- C. Strong acids have high pKa values and weak acids have low pKa values.
- D. Buffers resist a change in pH when protons are produced or consumed. Maximum buffering capacity occurs \pm 1 pH unit on either side of pKa. Physiologic buffers include bicarbonate, orthophosphate, and proteins.

Which of the following statements are true?

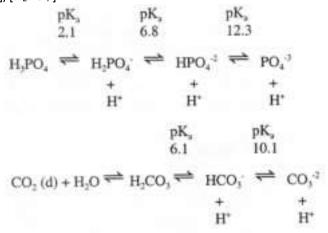
(1) A and C

(2) C and D

(3) A, B and D

(4) A, B and C

10. The pH of blood of a healthy person is maintained at 7.40 ± 0.05 , Assuming that this pH is maintained entirely by the bicarbonate buffer (pKa₁, and pKa₂ of carbonic acid are 6.1 and 10.3, respectively), the molar ratio of [bicarbonate]/ [carbonic acid] in the blood is


(1) 0.05

(2) 1

(3) 10

(4) 20

11. In a venous blood sample, the ratio of $[HPO_4^-]^2/[H_2PO_4] = 2$.

In this same blood sample, what would be the ratio of $[HCO_3^-]/[CO_2(d)]$?

(1) 20:1

(2) 15:1

(3) 10:1

(4) 5:1

- 12. Consider the following statements for buffer
- A. The ability of a buffer to resist pH changes with added acid or base is directly proportional to the total concentration of the conjugate acid—base pair, $[HA] = [A^{-}]$.
- B. Maximal buffering by weak acid is when pH = pKa and is in its useful buffer range within 1 pH unit of its pKa.
- C. The lactate and acetate ions that are components of most biological fluids are important for maintaining physiological pH (pH=7) because they have pKa in this range.
- D. The pK's of two closely associated acid—base groups in polyprotic acid are independent.

Which of the following statements are true?

(1) A and B

(2) C and D

(3) A, C and D

(4) B, C and D

Section C: Molarity/Colligative Property/Rate Of Reaction

1. If the nucleus of diploid somatic cell has 2n=48 chromosomes. Calculate moles of chromosome in diploid somatic cell [1 mole = 6×10^{23} molecules].

(1) 8 X 10⁻²³

(2) 48 X 10⁻²³

 $(3) 8 \times 10^{23}$

(4) 2.88 X 10⁻²¹

2. What will be the required volumes of 1N HCl and 4N NaOH to prepare one litre solution of pH 7?

(1) 500 ml; 500 ml

(2) 800 ml; 200 ml

(3) 600 ml; 400 ml

(4) 200 ml; 800 ml

3. Calculate the molarity of enzyme alcohol dehydrogenase solution with concentration of 1mg/ml (Molecular weight: 80 Kd)

(1) 12.5 M

(2) 12.5 mM

(3) $12.5 \mu M$

(4) 80 mM

4. In a polymerase chain reaction, the concentration of each primer needs to be 10 μ M. If the primer is 20 nucleotides long and average molecular weight of each nucleotide is 333Da, what would be the concentration in μ g/ml?

(1) 660

(2)66.6

(3) 6.6

(4) 0.66

5. Suppose the major solutes in intact lysosomes are KCl (0.1 M) and NaCl (0.03 M). When isolating lysosomes, what concentration of sucrose is required in the extracting solution at room temperature (25 $^{\circ}$ C) to prevent swelling and lysis?

(1) 0.13 M

(2) 0.26 M

(3) 0.07 M

(4) 0.31 M