INDEX

Section 1: Engineering Mathematics								
Chapter No.	Chapter Name	Page No.						
1	Linear Algebra	1						
2	Calculus	5						
3	Differential Equations	10						
4	Probability & Statistics	14						
5	Numerical Methods	19						
Section 2: Gene	Section 2: General Biology							
Chapter No.	Chapter Name	Page No.						
1	Biomolecules	25						
2	Enzymes	33						
3	Metabolism	39						
4	Bacterial Diversity & Microbial Methods	43						
5	Microbial Metabolism & Growth	47						
6	Bacterial & Viral Diseases	51						
7	Basics of Immunology	55						
8	Humoral Immunity	59						
9	Cell Mediated Immunity	65						
Section 3: Genetics, Cellular and Molecular Biology								
Chapter No.	Chapter Name	Page No.						
1	Genetics & Evolutionary Biology	72						
2	Cell Biology	84						
3	Molecular Biology	95						
Section 4: Fund	Section 4: Fundamentals of Biological Engineering							
Chapter No.	Chapter Name	Page No.						
1	Engineering Principles & Thermodynamics	117						
2	Transport Processes	121						

Section 5: Bioprocess Engineering and Process Biotechnology						
Chapter No.	Chapter Name	Page No.				
1	Bioreaction Engineering	126				
2	Upstream & Downstream Processing	144				
3	Instrumentation & Process Control	155				
Section 6: Plant, Animal and Microbial Biotechnology						
Chapter No.	Chapter Name	Page No.				
1	Plant Biotechnology	160				
2	Animal Biotechnology	175				
3	Microbial Biotechnology	191				
Section 7: Recombinant DNA technology and Other Tools in Biotechnology						
Chapter No.	Chapter Name	Page No.				
1	Recombinant DNA Technology	202				
2	Molecular Tools	213				
3	Analytical Tools	223				
4	Computational Tools	232				

Section 1

Engineering Mathematics

Chapter 1: Linear Algebra: Matrices and determinants; Systems of linear equations; Eigen values and Eigen vectors.

Chapter 2: Calculus: Limits, continuity and differentiability; Partial derivatives, maxima and minima; Sequences and series; Test for convergence.

Chapter 3: Differential Equations: Linear and nonlinear first order ODEs, higher order ODEs with constant coefficients; Cauchy's and Euler's equations; Laplace transforms.

Chapter 4: Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.

Chapter 5: Numerical Methods: Solution of linear and nonlinear algebraic equations; Integration by trapezoidal and Simpson's rule; Single step method for differential equations.

CHAPTER

LINEAR ALGEBRA

MULTIPLE CHOICE QUESTIONS (MCQ)

- 1. If $3A B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ then find the value of
 - $(1)\begin{bmatrix}3 & 2\\1 & 1\end{bmatrix}$
- $(2)\begin{bmatrix}3 & 1\\2 & 1\end{bmatrix}$
- $(3)\begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$
- 2. The eigen values of A= $\begin{bmatrix} 8 & 2 \\ 0 & -4 \end{bmatrix}$ are
 - (1) 2, -4

(3) 8, -4

- (4) 4. -4
- The determinant of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 7 & 8 \end{bmatrix}$ is
 - (1) 1

(2)0

(3) -1

- (4) 3
- Write the number of all possible matrices of order 2×2 with each entry 1, 2 or 3.
 - (1)32

(2)49

(3)36

- (4)81
- 5. Matrix A = $\begin{bmatrix} 0 & -2 \\ n & 0 \end{bmatrix}$ will be skew-symmetric when p=?
 - (1) 2

(2) 1/2

(3) - 1/2

- (4)2
- 6. If $A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$, then $A^2 + 2A$ will be
- 7. What is rank of the matrix?

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(1) 1

(2) 2

(3) 3

(4) 4

The system of linear equation

$$ax + y = 2$$

$$2x + 3y = 5$$

The system of linear equations in two variables shown above will have unique solutions, what is value of a?

(1) 1

(2)2

(3)3

- (4)4
- 9. What are the eigenvalues of the following matrix?

$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$$

- (1) $\frac{3\pm\sqrt{41}}{2}$ (3) $\frac{5\pm\sqrt{41}}{2}$
- 10. Which of the following matrix has eigen value 2, 3
 - $(1)\begin{bmatrix}2&1\\0&-3\end{bmatrix}$
- $(2)\begin{bmatrix} 2 & 0 \\ 5 & -2 \end{bmatrix}$
- (3) $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$
- $(4)\begin{bmatrix} 2 & 0 \\ 3 & -2 \end{bmatrix}$
- 11. If A is square matrix then orthogonality property mandates
 - $(1) AA^T = I$
- (2) $AA^{T} = 0$
- (3) $AA^T = A^{-1}$
- $(4) AA^T = A^2$
- 12. If $P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then $Q^T P^T$ is
 - $(1)\begin{bmatrix}1 & 2\\ 3 & 4\end{bmatrix}$

- $(2)\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
- $(3)\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$

- 13. The matrix P given below

$$P = \begin{bmatrix} 0 & 1 & 3 & 0 \\ -2 & 3 & 0 & 4 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 1 & 6 \end{bmatrix}$$
 the eigen value of P is given by

- (1) 0,3,6,6
- (2) 1,2,3,4
- (3) 3,4,5,7
- (4) 1,2,5,7

NUMERICAL ANSWER TYPE (NAT)

- 1. The negative eigen value of the following matrix is _____ (in integer) $\begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$
- 2. The determinant of the matrix $\begin{bmatrix} 2021 & 2022 \\ 2023 & 2024 \end{bmatrix}$ is _____ (in integer)
- 3. The largest eigen value of the matrix $\begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix}$ is _____(in integer)
- 5. If the sum & product of eigen values of 2×2 real matrix $\begin{bmatrix} 3 & p \\ p & q \end{bmatrix}$ are 4& -1 respectively, then |p| is _____ (in integer)
- 6. If $\begin{bmatrix} 10 & 2k+5 \\ 3k-3 & k+5 \end{bmatrix}$ is symmetric matrix, the value of k is _____(in integer)
- 7. The rank of the matrix, $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ is ______

ANSWER KEY										
MULTIPLE CHOICE QUESTIONS (MCQ)										
1	2	3	4		5	6	7	8	9	10
(3)	(3)	(2)	(4)	(4)	(3)	(2)	(1)	(3)	(3)
11	12	13								
(1)	(4)	(4)								
NUMERICAL ANSWER TYPE (NAT)										
1	2	3	4	5	6	7				
-3	-2	5	1000	2	8	3				

SOLUTION

MULTIPLE CHOICE QUESTIONS (MCQ)

1. Correct Answer is (3):

Given

Given
$$3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\Rightarrow 3A - \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\Rightarrow 3A = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\Rightarrow 3A = \begin{bmatrix} 5 + 4 & 0 + 3 \\ 1 + 2 & 1 + 5 \end{bmatrix}$$

$$\Rightarrow 3A = \begin{bmatrix} 9 & 3 \\ 3 & 6 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 9 & 3 \\ 3 & 6 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 9 & 3 \\ 3 & 6 \end{bmatrix}$$

- $\Rightarrow A = \frac{1}{3} \begin{vmatrix} 1 & 6 \\ 3 & 1 \end{vmatrix}$
- $\Rightarrow A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$
- \Rightarrow option (3) is correct.

2. Correct Answer is (3):

Given,
$$A = \begin{bmatrix} 8 & 2 \\ 0 & -4 \end{bmatrix}$$

By observing, matrix A is upper triangular matrix So, diagonal entries are the required eigen value.

- \Rightarrow 8, -4 are the eigen value of matrix A.
- \Rightarrow option (3) is correct.

3. Correct Answer is (2):

Given matrix,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 7 & 8 \end{bmatrix}$$

$$|A| = 1(40 - 42) - 2(32 - 36) + 3(28 - 30)$$

$$= 1(-2) - 2(-4) + 3(-2)$$

$$= -2 + 8 - 6$$

$$= 0$$

 \Rightarrow option (2) is correct.

Correct Answer is (4): We know that, a matrix of order 2 × 2 has 4 entries. Since, each entry has 3 choices, namely 1, 2 or 3, therefore number of required matrices 3⁴ = 3 × 3 × 3 × 3 = 81.

 \Rightarrow option (4) is correct.

5. Correct Answer is (4):

Matrix A is skew-symmetric

$$\Rightarrow A = -A^{T}$$

$$\Rightarrow \begin{bmatrix} 0 & -2 \\ p & 0 \end{bmatrix} = -\begin{bmatrix} 0 & p \\ -2 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & -2 \\ p & 0 \end{bmatrix} = \begin{bmatrix} 0 & -p \\ 2 & 0 \end{bmatrix}$$

$$\Rightarrow p = 2$$

 \Rightarrow option (4) is correct.

6. Correct Answer is (3):

Given,
$$A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$$

 $A^2 + 2A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} + 2 \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$
 $= \begin{bmatrix} 9+10 & 6+8 \\ 15+20 & 10+16 \end{bmatrix} + \begin{bmatrix} 6 & 4 \\ 10 & 8 \end{bmatrix}$
 $= \begin{bmatrix} 19 & 14 \\ 35 & 26 \end{bmatrix} + \begin{bmatrix} 6 & 4 \\ 10 & 8 \end{bmatrix}$
 $= \begin{bmatrix} 25 & 18 \\ 45 & 34 \end{bmatrix}$
 \Rightarrow option (3) is correct.

7. Correct Answer is (2):

Given,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

We take $R_3 \rightarrow R_3 - 7R_1 \& R_2 \rightarrow R_2 - 4R_1$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$$

Next $R_3 \rightarrow R_3 - 2R_2$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$R_2 \to -R_2/3$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Rank = number of non-zero row in row echelon form = 2. ⇒ option (2) is correct.

8. Correct Answer is (1):

Given.

$$ax + y = 2 \dots \dots (1)$$

 $2x + 3y = 5 \dots \dots (2)$

Multiplying equation (1) by 3 we get

$$3ax + 3y = 6 \dots (3)$$

Solve (3) in (2) we get,

$$x = 1, y = 1$$

Put in equation (1)

$$\Rightarrow a + 1 = 2 \Rightarrow a = 1$$

 \Rightarrow option (1) is correct.

9. Correct Answer is (3):

Given,
$$A = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$$

Consider $|A - \lambda I| = 0$

$$\begin{vmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$\begin{vmatrix} 3 - \lambda & 2 \\ 5 & 2 - \lambda \end{vmatrix} = 0$$

$$(3 - \lambda)(2 - \lambda) - 10 = 0$$

$$\lambda^2 - 3\lambda - 2\lambda + 6 - 10 = 0$$

$$\lambda^2 - 5\lambda - 4 = 0$$
$$\lambda = \frac{5 \pm \sqrt{41}}{2}$$

 \Rightarrow option (3) is correct.

10. Correct Answer is (3): We know that every upper triangular or lower triangular matrix eigen value are diagonal entries

So, matrix $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$ has eigen value 2,3.

Therefore, option (3) is correct.

11. Correct Answer is (1):

If,
$$AA^{T} = I \text{ or } A^{T} = A^{-1}$$

The matrix is orthogonal.

 \Rightarrow option (1) is correct.

12. Correct Answer is (4):

Given,
$$P = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 $PQ = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$
 $Q^T P^T = (PQ)^T = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$

 \Rightarrow option (4) is correct.

13. Correct Answer is (4):

|P| = 70 and trace(P) = 15

So, only (1,2,5,7) satisfies.

 \Rightarrow option (4) is correct.

NUMERICAL ANSWER TYPE (NAT)

1. Correct Answer is (-3):

Given, matrix
$$A = \begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$$

$$\begin{vmatrix} A - \lambda I | = 0 \\ \begin{vmatrix} 2 & 1 \\ 5 & -2 \end{vmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 - \lambda & 1 \\ 5 & -2 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)(-2 - \lambda) - 5 = 0$$

$$\lambda^2 - 9 = 0, \lambda = +3$$

Therefore, the negative eigen value is -3.

2. Correct Answer is (-2):

Given, matrix A =
$$\begin{bmatrix} 2021 & 2022 \\ 2023 & 2024 \end{bmatrix}$$

$$\Rightarrow |A| = 2021(2024) - (2023)(2022)$$

$$= 4090504 - 4090506 = -2$$

3. Correct Answer is (5):

Given, matrix
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix}$$

 $|A - \lambda I| = 0$

$$\begin{vmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{vmatrix} = 0$$

$$\begin{vmatrix} 3 - \lambda & 2 \\ -1 & 6 - \lambda \end{vmatrix} = 0$$

$$(3 - \lambda)(6 - \lambda) + 2 = 0$$

$$\lambda^2 - 9\lambda + 18 + 2 = 0$$

$$\lambda^2 - 9\lambda + 20 = 0 \Rightarrow \lambda = 4,5$$

$$\Rightarrow \text{ the largest eigen value of the matrix is 5}$$

4. Correct Answer is (1000):

Given,
$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

 $A^3 = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 18 & 14 \\ 7 & 11 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 72 + 14 & 36 + 42 \\ 28 + 11 & 14 + 33 \end{bmatrix}$
 $A^3 = \begin{bmatrix} 86 & 78 \\ 39 & 47 \end{bmatrix} \Rightarrow |A^3| = 86(47) - 39(78)$
 $= 4042 - 3042 = 1000$.

 \Rightarrow therefore, the determinant of A^3 is 1000.

5. Correct Answer is (2):

From the property of eigen values, Sum of eigenvalues = trace of matrix 4 = 3+q q = 1 product of eigen value = determinant $-1 = \begin{vmatrix} 3 & p \\ p & q \end{vmatrix}$ $3q - p^2 = -1$ $3 - p^2 = -1$ $p^2 = 4$, $p = \pm 2 \Rightarrow |p| = 2$

6. Correct Answer is (8):

$$A = \begin{bmatrix} 10 & 2k+5 \\ 3k-3 & k+5 \end{bmatrix}$$

$$\Rightarrow (2k+5) = (3k-3)$$

$$\Rightarrow k = 8.$$

7. Correct Answer is (3):

$$\begin{aligned} \mathbf{M} &= \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \\ R_1 &\leftrightarrow R_2 \\ \mathbf{M} &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \\ R_3 &\to R_3 - R_1 \\ \mathbf{M} &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 - 1 \end{bmatrix} \\ R_3 &\to R_3 - R_2 \\ &= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 - 2 \end{bmatrix} \\ \mathbf{Which is in echelon form} \\ \rho(M) &= 3 \ . \end{aligned}$$